clear that ¢ can be chosen among the common vertices
of P0 and Pi‘

Theorem Given P0 and the lattice made up of the
centers of its translates, there exists uniquely

a positive definite quadratic form such that Po
consists of those points x which satisfy the equation:

® (x)L ¢ (x=w) for all v in the lattice.

Lemma 1 Let Hk,z be the half-space which is bounded
by the common face of Pk and Py and contains P Then,
the a; can be so chosen that Hk,l is determined by
inequality

(al - g ) (x - e) 2 O with a =0 and ¢
the common vertex of Po'?k’Ei'

proof) Let P, Pyy ... , P surround the vertex c.
Let Em denote the common edge of those parallelohedra
with the exception of Pm which surround c. The edge
EO passes through the interior of Po. So, there

must exist positive numbers tl, Ses B tn such that

the edge Eo satisfies the equations

On the other hand, since the edge Em belongs to the
faces F,, k $ m, it satisfies the equations

8y ¢ (x = c) =0, k # me The hyperplane separating

P, and Py is determined by the edges E_, m $ k,4 .

By the foregoing, this hyperplane is determined by

the equation



t,8 (x = ¢) = tﬂaz-(x - ¢), where if either k
or { is = 0 we put t, =1, a = 0.

Since P, contains Fq if kx>0, the half- space in
question contains points with a+‘(x - ¢) = 0 and
gy’ (x = ¢) < 0, It follows that the half- space

is given by the inequality
1) (tﬂal - tkak)'(x— ¢) 2 0.

We have proved that, in the case of all the
bodies surrounding a fixed vertex ¢ of P,y We can
find ty, ... ,t, such that the inequalities 1)
define Hk,ﬂ‘ In general, starting with Fg¢ we
define the numbers tk by taking a chain of
contiguous bodies from Fy to Fk. Since the space
is simply connected and 1) for Hk,n and Hl,m implies
1) for Hk,m’ the numbers t, are well-defined, Now,
the lemma follows by replacing ay by tiai. qge.e.d.

Note that in the general case of the above
lemma ¢ is any common vertex of Pk and Pl'

Lemms 2 If the number of faces of P0 is 2s and
if we number the adjacent bodies P, (L 1€ 28)

in such a way that Fi and F are parallel, then

i+s
the following relation holds By =By
proof) Assume that a; = - a; .. And suppose

that Fi and F! meet so that Pi and Eyhave the
common face F_ + u. Then Fy = P, + 1 and Py, g

and Pl+s have the common face -(Fm + u) = Fo. g = e
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i aj,q are orthogonal
to this face. Hence, since a; = -qa; . «>0,
we must have Bo,g = - ap . gimilarly, Qg = = ¥ 8y
for all k. Therefore a; = L a; which means that

q’ =1o q_oe odo

By Lemma 1 ay = 8y and a“s -

We now define a single-valued function § on
the lattice such that

¢(0) =0 é(u+uk)= §(u) + 8, b
where b is any point in the common face of P, * B
and Po U+ U

To show that the above function is single-valued

we take any three bodies P  + ul, P+ u2, R, ® us3
with a common vertex c. ILetu =u + u, ,

P ;. k
B B R Wy W W U, then the uniqueness

requires that
%(u")’) =§(ul) + @ c = %(ul) + arc + a-c,

If we show that a_e = R =R in this general
situation, the simple connectedness of R™ allows
us to prove that é(u) is well-defined by
shrinking a closed path through u and the origin
%o the point O at which @ (0) = O.
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Lemma 3 In this situation By = 8 E an
proof) From Lemme 1 we know that a y = a, is
perpendicular to Hk 1° A little reflection

reveals that F + u.z lies on the boundary of

1
Hk,g + u, So,

Similarly, Fo+ u® belongs to the boundary of
kal-'?,m + u~. So,

B ™ Ty T PP 320

By Lemma 2 By7 = —8p. This means that & = (3 =
and ag=-8, =a. g.e.d.

Furthermore, the uniqueness of the fu.nctional
values of ‘i’ (u) means that

@(uk+uj)= f(uk)-i-a (uk+9;

gﬂkuk+a uk-r%a-uj

é(u (‘-1-;l ol J)

= a4 uy ak“*"ﬂ"ak“k

ll

These equations imply that ays uj = ajfuk.

We choose n of the vectors uy which generate
the lattice. for an arbitrary lattice point
u =_§ x.u,, we construct the vector a -Z > K S

e | ' - - ©
Then, from the relation (a + ak) (u + u'k) -gau=

80y + B + aku=2ak(u+éﬂuk),weobtainthe

equation @ (u) = % a-u.



i3

We now claim that the quadratic form @ (x) =
2§(u) @ 3 Si;jxix,j with Bi;j = a, uy + uy 8y
defines the given parallelohedron Py and is
positive definite.

In fact, ?(x-u-uk) - $Y(x=nu) =
2a.k-(x -0 - é'uk), since u + %u,k is in Py + u.

We know that ak~(x -u - %u,k) 2 0 if x is on the
side of Fk containing P o ¥ u. So, constructing

& chain, we see that P(x - u) & P(x -v) if x

is in Po + u, Equality holds if and only if

Po + u and Po + Vv are contiguous and x is on their
common boundary. Thus, P. is determined by the

equation

(o]

¢(x) & P(x = v) for all v in the lattice.

Finally, the form is positive definite. It is
positive semi-definite because ¢ (u) 2 O for all
u in the lattice by the way the form was constructed.
This property extends to all real vectors by the
homogenuity of the form. If ¥#(x) = O for some
x = 0, then Po is unbounded which is contrary to
the assumption at the start of this section.

This proves the theorem in its entirety.
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§4 The Regulators and Cheracteristics which
Correspond to the Sides of P_ [11][16]

We define a simplicial decomposition of the
ambient space of Po as follows. The vertices of
the decomposition are the lattice points. The
lattice points Ug gy eee oWy, are said to form
a k-simplex if and only if Po + Ug oy eee ,P0 + Uy
have a non-empty intersection. ILet c be a vertex
of Po * W, and let L be the n-simplex determined
by ¢. That is, L is the simplex (uo,ul,...,un)
such that ¢ is the common vertex of P  + uy (0 £ j &n)
( These Uy ... ,u  are different from the ones

in § 3y

Definition A positive definite quadratic form
Yix) =3 bijxixj defines a set of primitive
parallelohedra of the same type as those associated

with Po if the corresponding simplicial decompositions
are the same., The form is also said to be of the
same type as the form associated with Po.

Thus,the angles of the sides of the cell around

the origin may be varied without changing the type
if the vertices of the corresponding simplices
remain unchanged. This just means that the lattice
is the same.

Let A be the matrix of the form in the
previous section. Then, according o $ 3, the
function

Flc,x) = % @ (x) - Axec = =2(p(c) = P (c-x))
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satisfies the equation F(c,u) = « if u =u,
.+s,u, and the inequality F(c,u) > A otherwise.
In fact, the lattice is determined by these
conditions for all ¢c. Let Cy denote the second
common vertex of the parallelohedra P + Wy
with h = k. Let L be the simplex corre5ponding
to Cyce Call the vertex of this simplex which is
not among the Uy Vye We have the relationships

F(ck,uh) - F(c,uh) =&, -« if h # k and > A -«
it h = I;

This means that the vector A(c - ck) is orthogonal
to the common face of L and L~. Moreover, this
vector has positive projection on any of the
vectors u, - W, with h # k. We write A(c - ck) =
ﬁpk with £>0. In this equation p, is a
primitive integral vector; it is determined by k
and the vectors u , eece yUp. P, is called the
regulator of th% edge (c,ck) and p, is called the
characteristic vector of that edge.
It is convenient to define F*(c x) = F(e,x) -

and to write an arbltrary lattice vector as

2 8, u; vhere 2 0, = 1. Then, we have

150 10
F*(c,u) = ~§ u) - Au-c -; 6; (lf(u ) - Au,. c)
3§ - 2 o:dlu)).

.
250

il

Also, we have

F*(c,vk) = AVy- (c - c) + F(ck,v ) - F(c,uh)
Avy (c -c) + F(ck,uh) - F(c,uh)
A(c - ok) (w, = vy) = 2P (4 = vy )
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S0, we have the formula

@ Pepye (wy = v) =%(4’(vk) - g“-'f’(“i))' h¢k

Ve =2y S e; =1

which expresses pk as a homogenous linear form in
the Si;j for fixed Ugy eee sUy and .vk. As was
mentioned above fk depends only on k and the
vectors U y, «eo sUp e If we vary the coefficients
Si;] of ¢(x) in a manner that keeps all the ﬂk
positive, it would seem that the type of the form
@(x) would remain the same.

Theorem If we fix the lattice corresponding to
¥ and P, the coefficients 8; 4 may be varied

in such a way that the -Pk remain positive without
changing the type of the form.

proof) We want to show that the lattice
associated with the new form 'f’ is the same
lattice associated with ¢ . The lattice
associated with @ is determined by the conditions

F*(c,x) =0 if X = Uyy eeeyW, for all c.

>0 otherwise _
We will show that these conditions remain valid
for the new f,.

For that purpose see the figure on the next
page. Let ¢’ be a vertex of P_ + u such that we
can connect simplices L, L(l), cee ,L(m) satisfying
the condition that u is always on the opposite side
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of the extension of the line segment L(k}\L(k+l)
than ¢ is. This can be done by drawing & line from
¢ to u and choosing simplices which meet that line
segment, :

We have 3

F*(c,x) - F*(ck,x) = =Ax-(Cc = ck) + Auh-(ct— ck)
=Py (i -x)  hfk

So, in particular, one limnk in the chain of simplices
gives the equation

* * 2
P*(c"u) - F (" u) =pp, (fP) mw) 1 pm
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where we have called the regulator associated with
*
[c ,c*ﬂﬁ. Then, as mentioned previously,

*(u(n) ())>0 i$n

We express u —2 8; a{1) witn E e, =1

3:0
w.
W
w
(ab (
xX=6uw + .- 4 9,,,‘\!“)
Bt - 8y =1
13.(“) uto

Since u(n)is on the, opposite side of the hyperplane
2 6; ull) §° 6; =1 from u, we must have
6 < 0. This means that

R (u(i) - u) = p, (u"i) - % gsu(j)) i#$#n

p, (3 6 (uh) uld))

i

Thus,

P (c*,0) - 7 (e*?,u) = Pop, (0P —w) >0
i o S

Since F*(c,u) = 0, we have by summation that F*(c,u) >0
if all the p, are > 0. q.e.d.
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§5 The Principal Domain [l6]

Theorem Each residue class of lattice points
modulo 2 contains one pair of points + u, such
that Py and Po + u  are contiguous. In fact,
the w, are the points characterized by the
conditions

*) @(u =-2v) 2 p(w,) for all vin
the lattice

proof) If P, and P, + u, are contiguous, and
if x 1s 1n ) then

P(x) - p(x - Vv) = 2AX-V = AV.V = 2AV.(x -3V)
<0 for all v in the lattice
and also - 2Av-(uk - X - 3v) £ 0 Dbecause
w - X is in Po'

Adding these two inequalities, we get
Augeuy Q_.A(uk - 2v)-(uk - 2v) which is ¥*).

Conversely, if ?(u‘k -2v) 2 @ (u.k) for all
v in the lattice, then the point x = %uk satisfies

P(x)¢ ¢(x -v) for all v in the lattice.

Hence, x is in Po’ Po and Po + 2x = Po + U, have
boundary points in common, and therefore by the
definition of a primitive parallelohedron they
must be contiguous. q.e.d.

[}
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Now we examine the "principal domain", that is the
domain of all forms of the same type as the
"principal form"

@(x) 3x12 + 3;22 + 3x32 - 2x1x22-2x1x3 - 2xp%,
= z Sl z& (x5 - xj) i

In this case the u, consist of the 2(2° -1) = 14

vectors whose coordinates are made up of

exactly i, i=1,2,3 positive or negative 1l's and

3 - i zeroes.

If we transform the variables by the matrix
-1

A —, the equations of the half-spaces defining
the extremal body
e
x » <
1 -1 1,
= X = A > 2
px-u)2 ¢(x) X? x%,

become

f’(uk) + 2uk-x'2; 0

- T R
412(x'i+x3)20 i<j
3+ 2(xg + x5+ xi) 2 0

Changing the variables again to new coordinates,
Yy ==X ¥p =-X; ¥y = —xé Jo = X7 + X5 + xé,
the equations become

3429320 4=0,1,2,3
42y +yN20 1<y
3+ a2y vyt ) 2 0 1<i< K

We will now calculate the characteristics
and regulators that correspond to this extremal
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body.

Proposition The coordinates of the vertices of
the extremal body satisfy the equations

3+2y; =0 4+ 2y +yy) =0 3+ 2(3; +I5+77) =0
where (i,j,k,m) is a permutation &F (3:;2,3:0)s

proof) For (1,2,3,0) we have the solution xl 3/2,
= %, x; = -k, We check that @(x) + 2% ¥,

=

1xi
;2 ’ ’ »

E (xi +x)+ ;'(x 'X;}) +(xi-»xj)1320

for all x'in the lattice,

The coordinates of the other 24 vertices are found
by permuting the yi-coordinates. q.e.d.

Given two vertices (i,j,k,m) and (j,i,k,m), the
corresponding simplices have a common face. The
vertices of this face are the vectors u; + uj,

u; + uj t U, uy + uj tu ot u, the last of which
is zero. From the previous section we know that
the corresponding characteristic has constant
projection on these vectors. Thus, py + p'_j = 0
and p; + Py * By = O, if i $#0and j # 0 (we

have altered the previous notation, letting P
stand for the 1th coordinate of the characterlatic

p). From these equations we find that p; = -1
and pj =1, Jf 1 = 0, then Py t Pp + Py = pJ and
we find that p, = -1 with the other coordinates zero.

Now we use formulsa @ from §4 to calculate
the regulators of the edge corresponding to the
two vertices chosen above, Let Vx = u:j and u =
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a vertex of the face in the formula. Representing
uy = O.ui + G (u; + uj) +. 6, (u; + uy + w) +
%(ui + uj + o+ um) & 6; = 1, we find that
,=-1, =1, 6 =0, §&=1. Then,

2 0= (A1) = @(up) + f(uy) - (uy +uy)

—2111- uj L]

Thus, i #0 j 4 0#}3’, = -84 If j = 0, then
fq e Ty

This shows that these regulators are the same
as the j‘k defined in section 1. Since in both
cases the reduced domains are defined by the conditions
P« > 0, the two methods of reduction give the
same reduced forms, We have only shown this for
the case n = 3 and in fact it is not true for
higher dimensionb,
Proposition In the case n = 3 Voronoi's two
methods of reduction give the same reduced forms,
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&6 The Five Three Dimensional Parallelohedrons

From what we said in §l all positive
quadratic forms in three variables are equivalent
to a form of the following type

1] N
§ & /\x2 + A'y2 + Az2 + )ﬂ.(y—z)2 +/u.'(z-x)2 +)u.(x«-y)2
where all the coefficients are 2 0.

From this general form we have 14 half-spaces
which define the corresponding primitive parallelo-
hedron. These are obtained by the technique of the
previous section. There are 7 non-zero residue
classes mod 2 represented by vectors u,

W & (00 1) 5 10,y 140),/(0, 0,6), (1,1,0),(2,0,1) , (0,1,1),11,1,1)

such that the 14 surrounding points correspond to
+u (1¢k £7). By a theorem of Minkowski [11] there
are at most 14 contiguous bodies surrounding a
parallelohedron in three dimensions. By substitution
in

Q(uk) + 2 (uk- x)?_ 0
we have the half-spaces given by the equations

(A" )¢ x € F(Aa T+ RN
“H(A+ptep ) & 7€ N e WA )

H(Arp ) € 2 € H(Aepent)

SH(AN N epte )y 4 2 EAN A A0 R0 )
(A Aeptan ) gz + x$E(NEA LR L 0 )
(AN et )<x + y<HA¥ A s p v ' )
H(A+ M+ A") Cx+y+z2LEA+ A A" )
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These inequalities define a truncated octahedron.

Since the domain of reduced forms is the

same as the domain of forms of this type

there is only one type of primitive

parallelohedron in three

dimensions.

The imprimitive paralelohedrons are gotten by

setting some of the normal coordinates A,A',A", A’ "
of the form equal to zero.

If we set u = 0 and u' =0 and A"= 0, the inequalities

-2 A< x$ &
AAN & yg N
2AN<zE BN

define a cube.

If we set upm' = 0 mm'= 0 or mpm'= 0, the inequalities
HAEx { 3A
“H(Nep) & v & (A +p)
A(Nap) &z & F(A*m)
A(AN+L) € g4z € AL

define a hexagonal prism.

N 4 ]
If we set A,m = 0 or mAd =0 or M, = 0 the
inequalities

H(APp) € x £ B A4p)
HAN+n) £ 7 HN+m)
S(pmep') € 2< F mrput)
“A(A'em) Sy+z € BN+
A(Ae*pm) ¢ z2+x S E(A+m)
A A+X ) € x+y+24& B(A¥N)
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define the rhombic dodecahedron.
If we set wu" =0 or m=0or u'=0, the
inequalities

“H(A+M) & x $E(Aep)
A(A*m) € g€ HNen)

H(Nrued) ¢z € F(Neman)

(AN NA) < g+ oz & BN N
H(A+Aem) € 2+ x € FHA+Asu)
H(AeMeX) € x4y 4z € F(Ae XN

define the elongated dodecahedron.
The other possibilities are

=0 or MM =0
which define the
or or
A'= 0 A:)"==O truncated octahedron
or or
A"-—-O A‘*H:O

il
or A=A'= \N=0 which defines a 2 dimensional

hexagon.

hexagonal prism rh&%ic dodecahedron elongated
dodecahedron

By Fedorov's result these are all the imprimitive
parallelohedrons.[1]
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’7 The Use of a Criterion of Voronoi to
Calculate the Densest Lattice Sphere

Packing

We now return to the problem of densest
packing of spheres. As mentioned in the introduction,
in terms of the associated quadratic forms, this
is equivalent with maximizingjm/1}5: Here M is
the minimum of the form on the lattice points and
D is its discriminant. There is a criterion for
this related to Voronoi's first method of reduction.
A positive definite form which is uniquely determined
by the vectors that represent its minimum is said to
be perfect. If there are s representations, then
there are s conditions on the coefficients of the
form. So, in any case, we must have s 2 #n(n + 1).
Where n is the number of wariables. This follows
from the linearity of the conditions.

We define the adjoint form of a given positive
quadratic form to be that form whose matrix is the
transposed inverse of the matrix of the given form.
Then, Voronoi's criterion can be stated as

Theorem\Voronoi[lé]) A positive definite form
corresponds to a maximum value of M/q}ﬁ'if and
only if it is perfect and its adjoint form occurs
in its reduced domain., The second condition is
equivalent to saying that the adjoint form is
representable as ﬁ;(1ﬁf:x)2 in terms of the
minimum vectors u, gf the given form.,

Now we examine the forms corresponding
to the sphere packings associated with the five
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different types of parallelohedra.

2 + (y - 3)2 +

truncated octahedron: x2 + yz + 2z
(y - x)°% + (2 - x)°

The vectors representing its minimum are

#(1;0,0) (0:3:0) [0,0,1) €1,1,1), Ustad, o) &lel?
hence it is perfect.
cube: x2 + y2 + 52
The vectors representing its minimum are
+(1,0,0) (0,1,0) (0,0,1), hence it is not perfect.
hexagonal prism: x° + y2 + 22 4 (y - z)2
There is only two minimum vectors + (1,0,0), so the
form is not perfect.

2

elongated dodecahedron: x2 + 32 + 24+ (2 = x)2

2
+ (y - 2)
The vectors representing its minimum are + (1,0,0) .

(0,1,0), hence it is not perfect.

rhombic dodecahedron: x° + 32 + (y - z)2 + (z - x)2

The vectors representing its minimum are + (1,0,0)

(0,1,0) {0,0,1) (0,1,1) (1,0,1) {1,1,1). .Im order

to show that it is perfect it suffices to verify that

the equations Fti ju'kiukj = 0 where Wy denote the
above six vectors?k = 1l,..046, have no non-zero solutions.
But, this can be easily verified by substitution., The

metrix of the above form is 2 O mal
0O 2 =1
and the matrix of the adjoint i i B

form is
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3 o 2 The form corresponding to this last
.8 & matrix can be represented in terms
e A & of the minimum vectors of the
original form as
2y2 + z2 + 2(x + 5)2 + (x+y+ z)2 A

Thus, by Voronoi's criterion the form corresponding
t0 the rhombic dodecahedron realizes the maximum
possible value of M/1}¢5: This gives another proof
of Minkowski's result that no other form not
equivalent to the rhombic dodecahedron's form gives
as dense a sphere packing.
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58 The Geometric Connection of the Voronoi
Reduced Forms with the Realm of Minkowski
Reduced Forms

The condition for the matrix Y corresponding
t0 a form to be Voronoi reduced can be written

(Ay,®AYA) - (A,,¥) 2 O for all A in SL(2)
We will write Y = BB and B = (B;...B ). The
columns Bi of the matrix B can be considered as
basis vectors of a lattice associated with the
form. As A runs through all the integral uni-
modular matrices, the columns of BA run through
all integral bases of the above lattice. Using the
ident::.'ty ‘_}‘:;_ Yy = E.; BjrBy, we w%u‘L sy that

a basis for‘a given lattice which minimizes the

sum & Bi'Bj is a reduced basis in the sense

of Voronoi.

Minkowski defined a method of reduction which
can be expressed in similiar terms. The conditions
for the basis corresponding to a form to be
reduced in the sense of Minkowski:

1) the C,'s are n vectors of succesively smallest
length which determine an integral basis for the
lattice (an equivalent formulation is that txsz'[CiI2
whenever (xi, ...,xn) = 1 greatest common divisor).
2) the angle between C; and C,; , is between O and

R /2,

Since the successive minima of the lattice occur

in pairs, it is clear that condition 2) can always

be satisfied.
In the case n = 2 there are three types of
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lattices in this context. B ¢
a
Bs Cs B‘ Ce
c,2B
"3’| C|=B| :

1!
J

rectangular lattice  hexagonal lattice general lattice

If we take cl and Co t0 be Minkowski reduced vectons

in one of these types of lattices, then B, =C

and 32 = —Cl + 02 will make the lattice Voronoi

reduced. This can be proved by interpreting the following

Theorem The geometric conditions for a two dimensional
form to be reduced in the sense of Voronoi are

2 2
1) ByB,860 2) - By B, ¢ B, 3) -By B, £ B,".

proof) That these conditions are necessary and
sufficient follows from section 1 since they state
that the P, 2 O. Another proof of their

sufficiency can be given as follows

Let Bl’B2 be a pair of vectors satisfying the
above conditions.

We want to show that no other vector of the form
B2 = mBl + nZB2 gives a smaller value for the sum
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2 2 2 _
(mBl+n332) + B" + mB, +nB1-B2-

2 2

2
+ Bl

n 1322 + (2mn + n)B]_-B2 + (m + m2) B,
than the value 312 * B22 + B]_*B2 that B1 and

32 give. As a preliminary step we note that if

m,n minimize the above sum

1) =D = H= ]l

2) n#$0

3) ifm# 0, mn >0 since otherwise 2mn + n <O
and replacing n by -n we would get a smaller sum,
Since m° + m + n° = (n - n)2 +2m + m 2 2mn + n,
we want to minimize (m - n)2 + (n-n). Thus,

we get m-n=<=1 orm=n,

case 1) m=n

- 2 2 2 2 2
sum = [n (Bl + B, ) + 2n B, B2] + [n(Bl + BlBE)]
? m=n = =1 since
2 : 2 2 ]
B;” + BB, 2 0 B," + B,” + 2By"B, 2 O.

case 2) m=n--1

N g . w2 2

:; n =1 since

s & 2 .
B,” + B,” + 2 By*B, 2 2(B," + By"By) 2 O.
So the only two solutions are B, = -B1 --B2 and
B, =3B, which give the same value for the sum. q.e.d.



