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On Voronoi's Method of Reducing Positive Quadratic Forms
Abstract by
Andrew William Harrell

A polyhedron is called a parallelohedron
if its parallel translates by the vectors of a
lattice just fill up the space it lies in. Centered

at the center of symmetry of each such body there is
a largest inscribed sphere. In this way we
associate a sphere packing with ezch parallelohedron.
Given a positive definite quadratic form we
diagonalize such a form by writing its matrix in the
form ¥PP where P =GL"'3,]. Then, the translates of
the sphere defined by ?(x) = Z."* e b i’: < 1/4,
M = the minimum of ¢ for integral variable values,
by the vectors of the lattice §,,'* §n form a
sphere packing. The ratio of the volume of the
spheres to that of the total space for this packing is
just 4% (h’l/2)3/3% where D is the discriminant
of @. Minkowski [1 ] proved that no form in dimension
3 not equivalent to that associated with the
rhombic dodecahedron gives as large a value as &t /A8
for the density of its packing. The word equivalent
means equal to & unimodular integral transformation
of the original form. We consider such equivalent
forms as defining the same "type" of parallelohedron
since the lattice remains unchanged.
Voronoi [2] introduced two methods of reducing
positive definite quadratic forms. The first method
utilized the inner product on the corresponding space
of symmetric matrices. The second method involved
what he celled primitive parallelohedra. A parallelohedron
is called a primitive parallelohedron if 1) each
vertex belongs to exactly one more edge of the whole
collection of translates than the dimension of the
space 2) each face coincides with exactly one face




¥

of the other bodies. Two primitive parallelohedra are
said to be of the same type if they determine the
same lattice., Voronoi's idea involved associatins
a positive definite quadratic form with each
primitive parallelohedron. This is done so that
the body is the set of points closer to the origin
than eny other lattice point in the metric defined
by the form. Then, generalizing Dirichlet's method
of reduction.[3], he subdivided the space P(n) of
all positive definite quadratic forms into cones
which correspond to a given type of primitive
parallelohedron., One such cone is singled out
as being the cone of reduced forms.

In short, this thesis is concerned with
1) a clarified presentetion of the relation between
Voronoi's two methods of reduction in the case n = 3.
2) use of this relation and a criterion of Voronoi
t0 prove Minkowski's result mentioned above
3) a geometric proof of the relation between Voronoi's
and Minkowski's method of reduction in the case n = 2
4) a geometric enumeration of the special automorphisms
associated with fixed point stabilizer groups acting
under arithmetric equivalence on the boundary of the
reduced domain
5) a short discussion of the application of 4) to the
problem of desingulariztion of the compactified
domain associated with Siegel's modular functions of
degree 2 and 3.

[1] Minkowski, H.:"Dichteste Gitterformige Lagerung
Kongruenten Korper". Werke, Bd. II S. 1l.

[é] Voronoi, G.F.:"Nouvelles Applications des Parametres
Continus a 1ls Theorie des Formes Quadratiques".
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INTRODUCTION

The theory of positive definite quadratic
forms is closely involved with the study of space
coverings by "parallelohedra". A polyhedron is
called a parallelohedroaif its parallel translates
by the vectors of a lattice just fill up the
total space. Fedorow used parallelohedra in
his enumeration of crystallographic space
groups[b]. He showed that there were only five
types in dimension three.

uY

cube hexagonal . rhombic
prism dodecahedron
elongated truncated
dodecahedron octahedron

A shorter proof of this by Delone is presented

in Alexandrov's book[1]. Shortly thereafter, Lord
Kelvin encountered the rhombic dodecahedron in
his study of closest sphere packingsﬂ?]. In two
dimensions the closest arrangement of circles
corresponds to a hexagonal lattice. Call this
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lattice Y.

A close-packed three dimensional arrangement can
be formed in two ways from Y. A copy of Y with
spheres in place of the circles may be laid on

top of the 1St layer such that either the spaces
marked X or the spaces marked Z are covered., Call
the layers formed respectively X and Z. Then, the
pattern XYZXYZ of layers leads to the face-centered
lattice which is found, for example, in the metals
gold, aluminum, and copper. In this example the
rhombic dodecahedron arises as the set of all
points which are closer to the origin than any
other lattice point.

\

L T e

By using the points neighboring the origin as vertices
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another body can be formed., Call this body the dual
extremal body. It is the cubo-octahedron, If we

choose the second option XYXYXY, we get the hexagonal
close-packed arrangement which occurs in the metal

cobalt., The dual extremal body in this case does not

have parallel sides. And it is easy to see that the centers
of the spheres no longer form a lattice.

@

cubo-octahedron

Minkowskj[tﬂ;ntroduced positive definite quadratic
forms into these matters. If we diagonalize such a form
by writing its matrix in the form tPP where P = (i‘- LI),
the translates of the sphere defined by P(x) = 2f+¥:+ %‘l
£M/4, M = minimum of ® for integral variable values,
by the vectors of the lattice with basis§ --- §, form a
pecking. The ratio of the volume of the spheres to that
of the total space for this packing is just 4N(M/2)3/345'
where D is the discriminant of ® . The problem of maximizing
this is equivalent with that of maximizing M/if_: But,
Gauss already solved this problem in[?l a review of
Seeber's book on the arithmetric reduction of pogitive
definite ternary forms. He proved Seeber's conjecture
that we always have M$ :f§5. Equality occurs, for instance,
in the form x2 - yz + 52 + Xy + X2 + yz. In this way it
was known that the lattice corresponding to the
rhombic dodecahedron gives the value “/Jig for the
densest packing
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of spheres. IMinkowski proved that no other form
not equivalent by a unimodular integral transformationm
gives this value, We consider such equivalent forms
as defining the same "type" of parallelohedra since
the lattice remains unchanged. '

In 1908 Voronoi published his work [15] which
forms the basis of the following thesis., He
introduced two new methods of reducing positive
definite quadratic forms. The firsé.meﬁhod utilized
the inner product on the corresponding space of
symmetric matrices, The second method involved what
he called primitive parallelohedra. A parallelohedron
is called a primitive parallelohedron if 1) each vertex
belongs to exactly n+l edges of the whole collection of
translates 2) each face coincides with exactly one
face of the other bodies. For example, the arrangement
below is excluded because a face coinecides with more than

one other face.

This definition is equivalent to saying that the vertices
determine a simplicial subdivision of the space in the
manner specified in § 4. Two primitive parallelohedra

are said to be of the same type if they determine the

same set of simplices. Of the five types of paralilelohedra
mentioned above, only the truncated octahedron is primitive.



Voronoi's idea involvedassociating a
positive definite quadratic form with each
primitive parallelohedron. This is done so that
the body is the! set of points closer to the origin
than any other lattice point in the metric defined
by the form. Then, generalizing Dirichlet's
method of reduction[‘.i], he subdivided the space
P (n) of all positive definite quadratic forms
into cones which correspond to a given type of
primitive parallelohedron. We will see that these
cones and their images under SL(n,Z) cover the
space (P (n) with the exception of their boundary
points which correspond to imprimitive parallelohedra.
From this it follows that the number of inequivalent
cones is the same as the number of types of
primitive parallelohedra. The five different
types of parallelohedra will be interpreted as
limiting cases on the boundary of the "fundamental
domain" associated with the truncated octahedron.
In order to examine what characterizes the
denseness of the sphere packings associated with
these parallelohedra, we use the criterion [|é]
Voronoi showed determines if a form assumes the
maximum value of M / '(”/3.

By means of a geometric interpretation of
the first method of reduction, we shall see the
relation of these methods of reduction with
Minkowski's method [|3] in the case n = 2 and some
special cases for n = 3. The final section mentions
an interpretation of this to the desingularizations
of the Satake compactification of the Siegel
moduler variety. The papers of Baily eand Borel[Z],
Igusa [10], satake[i4]]I5], Gottschling[8][9].



witness the large amount of work already done on
this problem.

I wish to thank Professor I. Satake for his
valuable comments on the exposition of this
work.



§1 Voronoi's First Method of Reduction

We denote byS(n) the space of all real
symmetric matrices of degree n. We define an
inner product in S (n) by

(4,B) = tr(4B) =S a;;b; = 3 &by,
for A,BGS (n). Let P (ni denote the set of all
positive definite symmetric matrices of degree n.
Then ¥ (n) is an open convex cone in S(n), and
is self-dual with respect to the above inner
product. Moreover, P (n) is homogenous under the
action A +p SUAU of GI(n,R). With respect to the
action of GL(n,Z) on the cone we define a fundamental
cone F, using the gquadratic form

. B 2
Po= %7 + X7+ eoe # XX+ XX+ wee ¥ X X

l'%' s e %,h
’,lg 1 ae e %
"= lepmd
- L L L
%%— L J l

F is defined to be made up of the matrices Y in
P (n) which satisfy the condition

(Ag, *UYU) - (A,,Y) 2 0  for all U in GL(n,2).

In order to study F we will define eanother
cone C. The definition of C makes use of the n(n+l)/2
vectors which represent the minimum of ¥ . That is,
those vectors u € z" such that tu $ou = 1 and the
first non-zero component of u is equal to 1. These




vectors are
ul — (1,0,...,0), eee 9 u‘?l-i"l = (l,"’l,o’-oo) LR

C is defined to be the set of matrices which
correspond to those forms which can be expressed as
winet) A
E" ‘pu(uk- x)2 s where Qis a non-negative real
number.,
For Y in C we have (A,Y) - (=-'A°,Y) =

2R Cupawy - Puan) = 2 p (Cuay -1) .

If we assume that A is a positive definite matrix
whose corresponding form has half-integral coordinates,
then for every point Y in C the above sum is a
non-negative integer. In particular, all A of the
form t[IﬁOUF, where U is in GL(n,Z), satisfy these
essumptions. So we see that C §F.

i 3 ﬁ (.u'k X)ZH (aij) s then we must have

h= 83, + Byt eee B, , k=1, ..., 10,

| '
We now define the normal coordinates of Y in
terms of a symmetric matrix of degree n+l. The new
matrix has coordinates with 1 & i,j & n+1 that
are the same as those of Y. The new coordinates

Yin—l—l satisfy the equations

ned
Y.. =0 izl, oos,ﬂ"‘l.-

it ij



We call Yij (1€ i<j € n+l) the normal

coordinates of Y.

These coordinates allow us to write the
matrices which belong to C in one simple expression,
Let Eij be the matrix of degree n whose ijth normal
coordinate is -1, and all of whose other normal
coordinates are zero. Inotherwords,

J
1 -1 T
Em* Lt 3 738 T = * =

j # n+l with zeroes elsehere.

Using these matrices, we have

C = R+ El.'} ]
141458

where R+ denotes the non-negative real numbers,
It is knowmn that F = C for n = 3. TFor a

proof of this and other basic facts on F and C

we refer the reader to the paper by Igusa [10] i



2 A Theorem of Dirichlet

Theorem 1) Let ax® + 2bxy + cy2 be a real

positive definite quadratic form. Then, there
] [ 1 L

exist three pairs ({,m), (4 ,m ), (f',m' 1 ¢ 2

such that for any (qf,p)e' R2 the inequality

2

(1) ax® + 2bxy + cy2 + 2(Ax +py) 2 0
]
holds for all (x,y) ¢ 2'.2 if and only if

(2) .9.12 + 2bfm + cm® + 2(af +/ m) 20
and similarly for ({ ,m’) and (p"m’).

2) Let H be the hexagon in the (9,3) plane
defined by the inequalities (2). Then, the
translates of H cover the plane without
overlapping.

3) If the form is "reduced", that is, a-b2>0
b€ 0, ¢c=b >0, the (f,m), (£',n"), (4°,n") may
be +taken o be [(1,;0); (0,1); (L,1)s

p:c*oof)l Let g(x,y) = ax® + 2bxy + -cyz. Define
new variables (ul,up) by the equations

- = au, + bu, , -f@= buy + cu, . Then, (1)
can be written as

2(x(au1 + buz) + y(bu.l + cuz)) < g(x,y)
or g(ul,uz) < g(ul - Xy Uy = y) Loy aTl

(x,y) € 2° .

The set in the (ul,uz) plane defined by

iThe proof is adapted from Cassels [3] to
this context. See also Dirichlet[5].



these inequalities is the set of points closer to
the origin than to any otherllattice point with
respect to the metric g(x,y)<. We call the
corresponding set in the (%,@)-plane V. In
particular, we have

dej<a x=+1,y=0 2g{¢<ec x=0,y=11
2|d-+p[( a+2b+c¢c x=1l,y=1 x=-=1,y=-=1.

First, supposing the form to be "reduced",
these inequalities define a figure of area =

A _j\\ (ac - b2).

1

a+ibeefy
L

%

"
N\
Thus, in this case, the inequalities (2) define

& hexagon of area 1 in the new variables (ul,uz).

H is contained in V. If V were of larger area

than H, expanding it by a factor of 2 would give

e convex figure containing no lattice points % (0,0)
and of area larger than 4. This is in contradiction
$0 & well-known theorem of Minkowski[1i]. Provided
we take into account that both sets are closed,

we know that H =V,

In the general case we transform g(x,y) by
an integral unimodular transformation into a
reduced form.

Remark Note that if ¢ = 0 or b = 0 or & = b the
hexagon degenerates into a parallelogram.



’3 The Form Which Corresponds to & Given
Primitive Parallelohedron [1][ié]

We start with a bounded primitive parallelo-
hedron PO in n-dimensional Euclidean space with
center at the origin. Recall from the Introduction
that a primitive parallelohedron is & polyhedron
which satisfies the conditions:

1) Its translates by the vectors of a lattice

just £ill up the space it lies in

2) Each of its vertices meets n+l edges of
adjacent bodies

3) Each face coincides exactly with one face of
the translated bodies.

Let the bodies adjacent to Po be numbered Pi, and
let the face between Po and Pi be Fi. The equation
which defines the half-space determined by Fi and
containing Py is of the form ai-(x - ¢) £ 0 where

¢ is any point on Fj. An example in two dimensions
is shown in the figure above. The u, denote the

i
vectorse from the origin to the centers of the Pi‘

It is



