real coordinates of the set of values as the surface to plot. The surface profiles themselves are displayed as color coded values after the
coordinate values are transformed by the root mean square function. For each x coordinate row value (in inches) on the abscissa, the
histogram function plots different colors that represent the number of different points with that y value as a vertical column. In the
MATLARB plot program of Appendix A, surfaceplt3, after the interpolated surface is plotted the fast Fourier transform of the coordinates
are taken and the root mean square of their values computed. This is what is plotted in the first histogram on the left in figure 7. Taking
the root mean square enables the computation of the histogram function, as it is written in MATLAB code to sort the values correctly into
bins. The second histogram on the right of figure 7 is a plot of the x,y coordinates of the the interpolated surface before their Fourier
transform and root mean square coordinate values are computed. This plot visually shows a representation of the distribution of the
surface coordinate values that the interpolation, at that degree of roughness and lacunarity, has generated.

co
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Fractional Bm Surface

Figure 6 Interpolated surfaces using 64 levels, 4 randomly generated points on the boundary, Hurst exponent .7 and lacunarity
parameter .2
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Figure 7 Histograms which characterize the coordinate values and spectrums of the interpolated surface from Figure 6

Figures 8 and 9 show the surface and corresponding histograms generated using the same parameters, but using 32 levels of resolved
interpolation. The spatial extent for the coordinates of the surface at this level of resolution is 2°x 2% and it is plotted over this range. In
the figure. Notice, that, except for a scaling factor, there is very little difference in the distribution of coordinate values of the histograms
of two surfaces generated with the same fractal parameters, but calculated to different levels of interpolated resolution. Fractal dimensions
can be calculated using a renormalized box-counting scaling process (cf. chapter 4 Pietgen and Saupe, 1992 and 2001). Thus, this
observation indicates that changing the resolution in process will not change the dimension of the surface’s power spectral density which
we are trying to match up.



Figure 8

Fractional Brn Surface

Surface in figure 6 with 32 levels of interpolated resolution
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Figure 9 Histogram values for surface in figure 7

In conclusion it is our opinion that the mid-point interpolation algorithm is suitable to use for filling in the
blank areas of sensor data. Examination visually of the histograms of different levels of resolution in the output of the
algorithm shows it to be robust in this sense. This approach is preferable to a using vector product of two one-dimensional
interpolations because we don’t want to assume the information in the blank areas is necessary symmetric in that sense. As
stated in the scope section of the paper in the introduction, we do not attempt to match up 3-D plots of the resulting
interpolated surfaces. Visual comparisons of histograms of data point values and Fourier transforms of the consistency of the
interpolated data at various scales and resolutions have been used to determine results. Future work that we do in this area
should concentrate on developing good workable programs to estimate by wavelets the fractal surface dimensions that occur
in the ground truth of various types of terrain that the sensors will be looking at. After the range of dimensions that we want
to consider is determined a measure of effectiveness should be constructed to match up the residuals errors between the rest
of the surface and the blank area with the rest of the surface and the output of the algorithm replacing the blank area. The
parameters in the algorithm that affect lacunarity and texture by generating normal Gaussian errors can then be varied in
order to investigate how robust the algorithm’s output is in a more precise mathematical sense.
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Appendix A

function plotint(filename,outf,percent)
% function to sample and plot

% a datafile of x,y and z coord

% values of pts. percent is the

% decimal amount of rows in the original
% file to plot

A=dimread(filename," ');

C=A(:,1:3); % extract first three cols.
[n,m]=size(C);

szz=n;

subrows=fix(percent*szz);
C1=C(1:subrows,:);

C1=C1*1072;

B2=sort(C1,1);
D2=sample32D(C1,1);
dimwrite([outf,'x1,D2(:,:,1)," );
dimwrite([outf,'y],D2(:,:,2)," );
dimwrite([outf,'z],D2(:,:,3)," );
X1=D2(:,:,1);

YI=D2(:,:,2);



Z1=D2(,:,3);

i=1;

mesh(XI,Y1,Zl), hold

for i=1:j:szz
plot3(C1(i,1),C1(i,2),C1(i,3),".");
end

end

function Aest=sample32D(A,detailfctr)
% function to sort the coordinates and
% plot a certain percent the sensor data
Bx=sort(A,1);
By=sort(A,2);
[n,m]=size(Bx)
sz=n
mnx=Bx(1,1);
mxx=max(Bx(:,1));
mny=By(1,2)
mxy=max(By(:,2));
intn=fix(sqrt(sz));
%intn=inin*2
intn=intn*fix{sqri{ 10 detailfctr))
xcellsize=(mxx-mnx)/intn
ycellsize=(mxy-mny)/intn
for i=1:intn
for j=1:intn
Aest(i,j,1)=mnx+i*xcellsize;
Aest(i,j,2)=mny+j*ycellsize;
Aest(i,j,3)=0;
end
end .
Aest(:,:,3)=griddata(Bx(:,1),Bx(:,2),Bx(:,3),Aest(:,:;,1),Aest(:,:,2));
end

function surfaceplt3(maxlevel,npts,H1,r,addition,fileread filesave)
% surfacepli3 -- Plot 2-d Fractional Brownian Surfaces

% along with histograms of their profile elevations

% and fast Fourier spectral densities.

%

% note: the histogram plots of surfaces show each

% row or column of the surface in different colors.

% the surface profiles themselves are displayed in

% as color coded values in root mean squared

% form. Taking the root mean square, enables



% the histogram function, as it is written in MATLAB, to
% sort the values correctly info bins
% the fileread filesave booclean values determine whether
% the boundary initial values are read from a file
% and saved .
% maxlevel is the dim of the input value matrix
% in terms of a power of two.
% npts is the number of initial value pts
% to be specified
A=intsurfaceplt(maxlevel,r,H1,0 fileread filesave,npts);
n=2"maxlevel;
% A is defined as a complex matrix here to allow
% the fast fourier transform function to be called
x=real(A),y=imag(A);
invx=fft2(A);
xi=real(invx);yi=imag(invx);
x1=abs(x);
for k=1:n-1

for j=1:n-1

z(k.j)=sart(xi(k,j)*2+yi(k.j)"2);

end
end
ti=1:n-1;
[XI,YIl=meshgrid(ti,ti);
plot3(X1,Yl,z);
xlabel(‘Fractional Brn Surface’);
figure
subplot(2,2,1);
hist(z);
xlabel('Histogram of abs of fft of Z');
subplot(2,2,2)
hist(x1);
xlabel("X.Y -values Histogram’);

function Y=intsurfaceplt(maxlevel,sigma,H,addition,bdvalues filesave,npts)
% fractal surface generator from Pietgen, Saupe Chap. 2
% maxlevel=maximal number of recursions, N=2"maxlevel
% sigma=initial standard deviation
% H=fractal dimension D=3-H
% addition =boolean variable to turn random
% additions on and off
% bdvalues =boolean variable to turn
% the specifcation of initial boundary values on and off
% {3 and {4 functions to average surrounding pts
N=2"maxlevel;
delta=sigma;
% set the initial random corners
if bdvalues ==0
% set the initial random corners
X(1,1)=delta*WhiteNoise();
X(1,N+1)=delta*WhiteNoise();
X(N+1,1)=delta*WhiteNoise();
X(N+1,N+1)=delta*WhiteNoise();
else

X=getinitvalues(maxlevel,npts, 'init.dat’,bdvalues);
end
if filesave

dimwrite('init.dat’, X" ");



end
D=N;d=N/2;
for stage=1:maxlevel
% rotating from grid type to type at 45 degrees
delta=delta*(.5)*(.5"H);
for x=d:d:N+1-d
for y=d:d:N+1-d
if x+1<N+1 & y+1<N+1
X(x+1,y+1)=f4(delta,X(x+d+1,y+d+1), X(x+d+1,y-d+1), X(x-d+1,y+d+1), X(x-d+1,y-d+1));
end
end
end
% displace other points if needed
if addition==1,
for x=1:d:N+1
for y=1:d:N+1
if x+1<N+1 & y+1<N+1
X(x+1,y+1)=X(x+1,y+1)+delta*WhiteNoise();
end
end
end
end
% rotating grid again
delta=delta*(.5)"(.5*H);
for x=d:d:N+1-d
if x+1<N+1
X(x+1,1)=f3(delta, X(x+d+1,1),X(x-d+1,1),X(x+1,d+1));
X(x+1,N+1)=f3(delta,X(x+d+1,N),X(x-d+1,N+1), X(x+1,N-d+1));
X(1,x+1)=f3(delta,X(1,x+d+1),X(1,x-d+1),X(d+1,x+1));
X(N+1,1)=f3(delta,X(N,x+d+1),X(N,x-d+1),X(N-d+1,x+1));
end
end
% interpolate and offset interior grid pts.
for x=d:d:N+1-d
for y=d:d:N+1-d
if x+1<N+1 & y+1<N+1
X(x+1,y+1)=f4(delta,X(x+1,y+d+1),X(x+1,y-d+1),X(x+d+1,y+1),X(x-d+1,y+1));
end
end
end
for x=d:d:N+1-d
for y=d:d:N+1-d
if x+1<N+1 & y+1<N+1
X(x+1,y+1)=f4(delta,X(x+1,y+d+1),X(x+1,y-d+1), X(x+d+1,y+1), X(x-d+1,y+1));
end
end
end

% displace other pts if needed
if addition==1,
for x=1:d:N+1
for y=1:d:N+1
if x+1<N+1 & y+1<N+1
X(x+1,y+1)=X(x+1,y+1)+delta*WhiteNoise();
end
end
end
end

for x=d:d:N+1-d



for y=d:d:N+1-d
if x+1<N+1 & y+1<N+1
X(x+1,y+1)=X(x+1,y+1)+delta*WhiteNoise();
end
end
end

d=d/2;
end

function y = f3(delta,x0,x1,x2)

y =(x0+x1+x2)/3+delta*WhiteNoise();
end

function y = f4(delta,x0,x1,x2,x3)

y =(x0+x1+x2+x3)/4+delta*WhiteNoise();
end

function A=getinitvalues(maxlevel,npts,filename,fileread)
% function to get initial boundary values
% to determine the solution of the p.d.e.
% If all the values are to be read from a
% file set npts=0, else these values
% are input one at a time from the console
for i=1:2"maxlevel

for j=1:2"maxlevel

Ali,j)=0;

end
end
if fileread==
A=dimread(filename," ');
end
for i=1:npts

k=input(‘row= "),

I=input(‘column=");

x=input(‘value=");

Ak, =x;
end

end












