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Vicksburg, Mississippi
Abstract

The well-known Ford-Fulkerson algorithm and most of the more
recent approaches to solving the network maximal flow and minimal-
cost flow problems use a labeling procedure. Labeling involves
using nodes in the network which have values and are updated by
adding a series of augmenting flows or edges until the optimal
solution is reached. In this paper, an alternative approach is
examined using the full ordered list of flow paths without cycles.
This list is generated by a Prolog-based depth-first search with
backtracking of the type described by Winston [13],([14]). This
approach keeps track of the full queue of partial search paths and
is easier to use to examine the solution for weak-links or critical
ncdes. If a modeler is creating a network to represent a real
situation it is reasonable to assume that the number of ingoing and
outgoing edges to a vertex are limited. Time bounds are presented
to demonstrate that the above approach is under these conditions
as efficient as the n-cubed algorithms explained in Tarjan [12]
which use a method of labeled preflows.

Key words - network algorithm, depth-first search, maximal
flow, min-cost flow, logic programming, backtracking.

1. Introduction.

With the development of computer graphics techniques for
displaying digital map information, new ways of representing unit
movement and aircraft or ship routing have been developed. However,
the use of digital map data presents problems as for example
representing the effects of various types of on- and off-road
obstacles, underwater mines, bridge interdiction on the movement
rates, and routing possibilities. Programs must be written to
define and store route movement networks and arrays of obstacles.
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For this paper, we will assume this already exists along with
avenues of approach or movement corridors and their corresponding
traverse speeds across the map. Harrell (7],(8],[9] gives a partial
description of some current techniques of doing this. The following
short glossary defines some of the basic terms that will be used:

Backtracking - An algorithmic search scheme which in order to
compute all the ways to satisfy a given goal computes one solution
through following a series of branching points and then retraces
its steps to the last previous decision in order to compute another

possible solution.
cycle - A path with the same starting and ending node.
Dead end - A node in a network from which no edges proceed.

Edge - The line connecting two nodes in a network. Each edge in a
network usually has associated with it a traverse time, vehicular
speed, or a flow-rate, and represents a given portion of the
overall map.

Flow- An assignment of of flow-rates to some or all of the edges
in a given network. Each flow-rate has to be less than or equal to
the flow-capacity of its edge.

Flow-capacity- The largest allowable flow-rate for a particular
edge.

Flow-rate - The number of vehicles per hour that can pass over a
given edge 1in the network. As explained in the text this can be
calculated as [1/(time it takes a group of vehicles to traverse the
edge) ] *number of vehicles in the group.

Maximal flow problem - The problem of determining what is the
greatest number of vehicles/hour that can travel through a network
at a given time. It is computed by designing an algorithm to
optimize the assignments of flows to edges in the network.

Maximal flow value - The value which is a solution to a Maximal
flow problem. Note, that it is possible for there to be several
different network flows which realize a given maximal flow value.

Min-cost flow network- A flow network with costs (times to
traverse) as well as flows associated with its edges. In this paper
in order to determine the cost associated with a flow the following
procedure is followed: 1) The flow rate on each flow path solution
through the network is multiplied by its time of traversal and the
result summed over all paths in order to obtain a total cost
associated with a given maximum flow solution. This is the measure

of effectiveness which determines the optimality of the solution.
The total cost of the flow can then be divided by the total maximum
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flow to obtain an average cost per vehicle to travel through the
network.

Min-cost flow problem- The problem of determining from all the
possible flows which realize a given network maximal flow value,
those which do it with minimal cost.

Network - A collection of nodes and edges that represent movement
possibilities over a given terrain area.

Node - A point of reference in a network from which edges are drawn
from and into.

Path - An ordered 1list of edges each of which has the same
starting node as the preceeding edge’s ending node.

An artificial intelligence network algorithm is methodology
based on searches for paths from start nodes through a network to
ending goal nodes using the methods of logic programming. The
search mechanism proceeds in an orderly fashion unifying the
variables in the search predicates from one level of search in the
network to another. The algorithm used must save the partial
solutions in an environment list so it can backtrack its way
through the previous variable bindings in order to generate all
possible ways of reaching the goal state. This differs from many
network algorithms that use labels (instead of a list of partial
search paths) at the nodes to store information as the steps in the
algorithm proceed. Thus, after the labeling algorithms are through
generating solutions, information is not kept on "how" the
solutions were reached.

The search algorithm discussed in Section 2 below will print
out ordered lists of shortest paths with and without the presence
of obstacles. These lists reveal the critical nodes or weak links
that most affect the optimal paths in the network. In order to do
this and compute movement possibilities across cross-corridors an
algorithm has to keep track of more information than can be stored
on just a single label per node in the network or on a single
search tree. One needs to store the same kind of list of partial
solutions that a logic programming unification algorithm does when
it tries to satisfy goal predicates.

Similarly, in developing programs to compute network flow
rates which identify the critical nodes in the solution, it is
important to compute the maximal or min-cost flows in terms of an
ordered list of paths from the start node (or set of nodes) to the
goal node (or set of nodes). The solution can be displayed just as
a logic programming interpreter displays in turn the 1list of
predicate variable identifications which satisfy the specified
goal. The question then becomes whether this approach is feasible
in terms of search time bounds and how it is implemented.

These questions are answered in this paper which contains
five sections. In Section 2 the main search algorithm used to
compute shortest paths or maximal flow paths and give the
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derivation of the number of search steps required to generate all
these solutions is presented. In Section 3 an explanation of how
this algorithm can be used to solve the maximum flow problems
associated with certain types of networks is discussed. In section
4 simple modifications to this algorithm are presented that can be
used to solve the corresponding min-cost flow problem. Section 5
contains a short discussion of the appropriateness of these
algorithms for the transportation problem and the assignment
problem, and the next and final section contains the conclusions.
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The Main Search Algorithm

As mentioned above, outputting the full search path allows the
user to determine the effect of weak links or choke points on the
solution. For example, in on- or off-road movement networks based
upons digitized maps, it is important to know the effects of
minefields, anti-tank ditches, abatis, and road craters on the
overall possible vehicular flow rate vehicles traverse across the
terrain. Network path-generating algorithms based upon dynamic
programming, dynamic tree structures, or node labeling do not save
the information on the movement possibilities through cross-
corridors in the terrain. This increases computational speed in
many cases, but important information about the vulnerability or
sensitivity of the solution to degrading factors is lost. The best
algorithm for these purposes is one that provides a way to measure
the effect of changing flow rates and times in certain parts of the
network on the overall solution.

An example of such an algorithm is given below. The search
procedure presented keeps track of the next best choices in a
sorted priority queue. This is necessary so the algorithm can
backtrack quickly to find another solution after it has
determined the shortest path or failed to reach a goal in a
given direction. In order to do this, it was convenient to write
the program in Prolog. An algorithm that does this is
described in the book by Winston [13] - The description of the
algorithm is as follows :

Step 1 Form a queue of partial paths. Let the initial
queue consist of the zero-length, zero-step path from the
start node to nowhere.
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Step 2.Until the queue is empty or the goal has been reached
dezermlne if the first path in the queue reaches the goal
node.

Step 2a If the first path reaches the goal node,
do nothing.

Step 2b If the first path does not reach the goél
node:

Step 2bl Remove the first path from the queue

Step 2b2 Form new paths from the removed path
by extending them one step

Step 2b3 Add the new paths to the queue

Step 2b4 Sort the queue by cost accumulated so
far, with least cost paths placed in front.

step 3 If the goal node has been found, announce success;
otherwise, announce failure.

The algorithm as given terminates when the shortest
incomplete path is longer than the shortest complete path. In
this situation there are no further paths needing to be
investigated for optimality. Since the paths which could never be
optimal have been pruned out at an earlier stage, the gqueue
remaining (which has been sorted at each stage) contains at its
head the optimal path.

The Prolog source code and Pascal source code for one
particular implementation of the algorithm is given in Harrell’s
report [9] and it can be implemented in the C language using
essentially the same code. There is a way to implement the
algorithm using a dynamic tree structure to keep the environment
of partial solutions which it is able to backtrack through (see the
book by Bratke). However, as mentioned above, a tree can store
information about only one partial path from its root to each leaf
or subtree node.

The question then becomes whether the list of all partial
paths accumulated using the search algorithm becomes so large that
it is impractical to manipulate. The theorems and the lemmas listed
below prove that under certain restrictions, such as: 1) no dead
ends in the network, 2) the maximum numbers of nodes going in and
out of a vertex bounded above, and 3) the maximum number of nodes
which are critical in the sense defined below is bounded, the time
it takes to finish this type of algorithm is not longer than for
the algorithms which compute shortest paths to create maximal and
min-cost flows according to the approaches of Edmonds and Karp [4].
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n -

Let:

ni = the number of nodes wi;h i edges proceeding from then,

nji = the number of nodes with j edges entering them and i
edges proceeding from them,

maxe = the maximum number of edges proceeding from any node
in the network,

emax = the maximum number of edges entering any node in the
network. -

call a node a critical backtracking node if it has more than
1 edge proceeding from it and more than one edge entering it.

Let ncrit = the number of critical bactracking nodes in a
network.

call a node of the network a q stage lth critical path
backtracking node if it is a critical path backtracking node and
it is preceeded in the network by g levels of backtracking nodes,
each having more than 1 edge entering them. Moreover, there must
be 1 of these backtracking nodes with more than 1 edge at the
preceeding search level to the given node.

Let ng;ji = the number of gq stage ,lth critical path
backtracking nodes with j edges proceeding into them and i edges
leaving them.

nicrit = the number of critical path backtracking nodes which
are not g level 1lth critical for g or 15 13

Examples of these definitions will be given in the course
of the following discussion.

Theorem 1 Given a connected directed graph with a starting
node and a goal node and no dead ends other than the goal node.
Moreover, if there are at most ncrit critical path backtracking
nodes with at most a g level instance of prior influence, then the
number of different paths (containing no cycles) from the starting
node to the ending node is bounded by the expression

1 + (emax —1&*(n -nl-ncrit) + (maxe*emax -1)*nlcrit
+( (maxe*emax) = - 1) *(ncrit -nlcrit)

Proof: This theorem is proved by following through the steps
of the above algorithm and counting the number of ways new paths
are generated. Step 2b4 which insures the solutions will be
generated in order of shortest length is not necessary if the
algorithm is only being used to generate all possible paths. At
Step 2b, new paths are added to the queue of partial paths each
time the search predicate finds a node following the current node
which does not form a cyclic path. Since 1) the graph is finite,
2) there are no dead ends, 3) the graph is connected, 4)no cycles
are permitted, then each new path will eventually reach the goal
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node.

During the generation of the list of partial paths, nodes with
only one edge proceeding into them and one edge leaving them expand
the current path but do not add any additional combinatorial search
possibilities to keep track of during the backtracking process.

Then, the number of paths which the non-critical backtracking

nodes enter into is:
1 +1%*n2 + 2*n3 + 3*n4 +(j-1)*nj +...(emax - 1l)*nemax¢ (1)

Using the fact that n = nl + n2 + ... nemax we note that the
above number is bounded by:

(emax - 1)*(n - n1) + 1

The example below (Figure 1) illustrates how equation (1) counts
paths in a network without any critical backtracking nodes.

Figure 1. Example 1

There are 14 nodes,
not counting Z.
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nl =6, n2Z =7

n3 =1

emax = 3
number of paths = (7 + 1)*1 + 2%(1) = 10 -
path search steps used to generate path1

ABDIZ
ABDGZ
ABDGFZ
ABEFZ
ABENZ
ACHMZ
ACJLMZ
ACJLZ
ACJLKZ
ACJKZ

PFHOWWKHENKEKR A

If the network we are considering has g stage 1lth critical
path bactracking nodes put none with g or 1 greater than 1 then the
search algorithm will generate an additional:

3%n..22 + 5%*n,.23 + ... 5*n,,32 +... (3*i - 1)*n,,31
] 1 18
L 5 s (max%*emax - 1)*n1}maxeemax paths. 4
{
'I. L]
This number is bounded by: ¥ ¥
(maxe*emax - 1) *(nlcrit).

Example 2 - consider the following movement network, having two
starting nodes Al and A2 and three goal nodes El, E2, and E3:

Solution:

1 » search step is defined to be one cycle of search through
the database of edges to determine which nodes are connected to a
given edge. It is assumed the network information is stored in a
vector structure in which each edge along with its starting and
ending node and value are kept. Since in generating the queue of
search paths a new path uses the nodes from the prior search paths,
it is not necessary to search through the database for all the
prior nodes in creating the new paths.
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Figure 2 Example 2

To compute all the paths for this network break it up into
six connected components corresponding to each possible combination
of starting node and ending node. Figures 3 through 7 show this.

1) Al - El1

ABDZE 8 solutions 7 is a l-stage 1th critical
ABCFGE path backtracking node
ABCDZE ?
ABCFLGE nzZ =2 n3=1 n1122 =1
ABDZGE
ABCFZE g8 = 1 + n2*1 + n3*2 + n1122*(2*2 =)
ABCDZGE =1+2+2 +3
ABCFZGE

2) Al - E2
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ABCFGME 6 solutions n3 =1 n2 = 3
ABCFLME
ABCFLGME 6 =1+ 1*n2 + 2%n3 =1 + 3 + 2
ABDZGME
ABCDZGME
ABCFZGME

3) A1 - E3 no solutions

4) A2 - El
AHLGE 3 solutions n2 = 2
AIWHLGE
AIKJHLGE 3 =1+ 1%n2 = 1 + 2
5) A2 - E2
AHME 9 solutions n2 = 3 n1132 = 1
AIWHME
AIKJHME
AHLME 9 = 1 + n2*1 + n1132*(3*2 - 1)
AHLGME =1+ 3+ 5
AIWHLME
AIWHLGME
AIKJHLME
AIKJHLGME
6) A2 - E3
AHE 3 solutions nz2 = 2
AIWHE 3=1+n2*1=1+2
ATKJHE
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Figure 3 Al-El

587



Figure 4 Al - E2
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Figure 5 A2 - El
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Figure 6 A2 - E2



Figure 7 A2 - E3
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27.7

Vehiculer speeds (km./br.)

Figure 8. Vehicle speeds

If vehicular speeds are added to the edges in the network of
example 2 as shown in Figure 8, the shortest path search algorithm
may be used to produce the full list of non-cyclic paths ordered
by their length in time (minutes to traverse). Figure 9 shows the
one shortest path and the full ordered list is shown below.

SHORTEST PATHS

AHE time(min)= 48.7
AIWHE time(min)= 56.8
AHME time(min)= 63.0
AIKJHE time(min)= 66.2
ABDZE time(min)= 67.2
ABCFGE time(min)= 672
AIWHME time(min)= 7150
ABCFGME time(min)= Td1:
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snortest path (in =in.)

Figure 9. Shortest-path, cross country movement network

ABCDZE time(min)= 74.9
ABCFLGE time(min)= : Thg2
ABCFIME time(min)= 78.9
AHLGE time(min)= 79.8
AIKJHME time(min)= 80.5
ABDZGE time(min)= 80.6
ABCFZE time(min)= 81.4
AHLME time(min)= 82.5
ABCFLGME time(min)= 83.0
AHLGME time(min)= 86.7
ABDZGME time(min)= 87.4
AIWHLGE time(min)= 87.9
ABCDZGE time(min)= 88.4
AIWHLME time(min)= 90.6
AIWHLGME time (min)= 94.7
ABCFZGE time(min)= 94.8
ABCDZGME time (min)= 95.2
AIKJHLGE time(min)= 97.4
AIKJHLME time(min)= 100.0
ABCFZGME time(min)= 101.7

AIKJHLGME time(min)= 104.2

If the network contains g level lth critical path backtracking
nodes with g or 1 greater than 1, then the computation of the
number of possible paths becomes more complex. Given nqui q level
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the mth among the q levels of that sth node which are preceeded
backtracking nodes with more than 1 edge entering theﬁpand thz rzg
among the 1 edges entering the node, let PRIO be the number
of gdgesfgntering that prior critical backtracklﬁg’%ode. Then, the
number of new paths generated by these nqlji level 1th iti
backtracking nodes is bounded by: TR critical

nqui g+l 4

E (H <II PRIORm.r.s)) *is-l

s=1 m=1 =1

i, = number of paths leaving the sth critical backtracking node
(which is bounded by maxe)

So, the total number
of such additional paths will be bounded by (ncrit - nlcrit)*(emaxq
*maxe) - 1. Note, in this computation, a critical backtracking
node may preceed (by occuring closer to the start node in the
network) more than one other such node a certain number of times.
In this case this formula will overcount the number of paths by
that same factor. See the example below for an illustration of how
this can occur. But whatever the case, these additional paths
exhaust all the ways in which the algorithm can possibly backtrack
to produce solutions. Thus, adding this bound to the previous one
we have the expression given in the statement of the theorem.
Q.E.D.

Example 3) In the network below the node B is a 2 level 2th
critical bactracking node.

I

€]
AN o _:‘_,

B
D &
A Ei]ﬂgﬂ#,r \\\‘\EEJ////)" ~\\a\
5 EJ.
ARPMBCG ARPNBCG
ASPMBCG ASPNBCG 24 solutions s =1, g = 2,
ARPQMBCG ARPTNBCG l =2, i} =3
ASPQMBCG ASPTNBCG 48=p; ; p-%. 1.1*P1.1.1
ARPMBDG ARPNBDG Py 2.1 p1.2.1}*3
ASPMBDG ASPNBDG
ARPQMBDG ARPTNBDG =2{2%2 +2*2}*3 >24
ASPQMBDG ASPTNBDG
ARPMBEG ARPNBEG PRIOR, » & = Pn.r.s
ARPQMBEG ASPNBEG
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ARPQMBEG ASPNBEG
ASPNBEG ARPTNBEG
ASPQMBEG ASPTNBEG

In this example B is a two stage 2th critical backtracking
node. This is because the 2 backtracking nodes M and N which
precede B in the network have more than 2 edges entering them and
and there are 2 levels of critical backtracking nodes P and then
M,N which preceed B. Because the node P preceeds the nodes M and
N, the formula overcounts by a factor of 2.

In the applications that these theorems are used we have some
freedom in how many nodes and edges are included in the network.
The network will be a representation or model of some physical
situation or process. In practice it becomes more and more unlikely
in a random physical situation that planar graphs containing many
g level 1lth critical backtracking nodes where g or 1 >> 1 will
occur. In movement networks based upon digitized maps such nodes
correspond to critical choke points at which the routes diverge to
go around an obstacle and then reconverge.

Theorem 2 Considering the same type of graph as in Theorenm 1,
now allow paths to travel in directions opposed to the way the
edges are directed. Then the bound for the number of possible paths
is increased to :

1 + emax*(n - nl - ncrit) + ((emax + maxe) *maxe - 1)*nlcrit
+ (((emax +maxe)*maxe)q - 1)*(ncrit - nlcrit)

Proof: Count the number of paths using the algorithm as in theorem
1. For those nodes with only one edge entering them, the new number
of possible edges which proceed outward has been increased by one.
These edges will create :

1 + 2%n2 + 3%*n3 + i*ni ...emax*nemax paths.
This number is bounded by 1 +emax*(n - nl -ncrit). For the nodes
with j > 1 edges entering them, the new maximum number of edges

leaving the node is emax + maxe. The rest of the formula follows
from the previous calculations.

Theorem 3 The number of search steps required to compute all
the paths of the type of graphs mentioned in theorem’s 1 and 2 is
bounded by:

1 + emax *(n -ncrit) +( (emax) (1) 1% nerit

where g = the maximum level of any g level 1lth critical path
backtracking nodes in the network,
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T,
-

o

Proof: This can be verified by tracing through the algorithm
and adding a marker to a node’s count each time a search step is
performed. In following through the algorithm note that since the
network is connected each node is encountered during the searching
and backtracking exactly the sum of the number of times that there
are different edges proceeding into it multiplied by the number of
times the preceding nodes to that edge have already been
encountered. For the nodes which are not critical path backtracking
nodes we have: , .
* (\ e c}J, "
1%#(1n +1) + 2*(2n) + .. emax* (emaxn) search steps,

where in = the number of nodes with exactly i edges entering into
them. This number is bounded by the number 1 + emax(n - ncrit). For
a node which is a q level lth critical backtracking node, the sum
of the number of times that there are different edges proceeding
into it multiplied by the number of times the preceeding no?ei }o
that edge have already been encountered is bounded by (emax) a¥i),
Q.E.D.

/ Example,i,(continued)

In this graph, which has no critical path backtracking nodes,
we have 1n = 10 and 2n = ¥ so the number of search steps should be
(10 +1) + 2*3 = 17. This can be verified by tracing through the
algorithm and keeping a count as below:

node search encounters node search encounters
‘A 3 H I
B T M 1T
D T L I
& TI: J II
I 1 K 11
G HE N T
F K3
\ E I total number of encounters = 17

%xample 3 (continued)

This graph has a two level 2nd critical packtracking node B.
The number of search encounters for the various nodes is as below:

node search encounters node search encounters
P TT B IIIILIITI
- Q T G IIITIIIIT

] II D FIIITIIL

M IIIT E ITTTIIE]Y

N IIII total number of encounters = 46

The following theorem holds for the same reasons as the

596



preceeding discussions.

Theorem 4 The number of search steps required to compute all
the paths in the case where the paths are allowed to travel in
opposite directions is bounded by:

1 + (emax + ma%elifn - ncrit) +
{(emax + maxe) q }*(ncrit - nlcrit)

Hethodology for Solving Maximal Flow problems

Given that there is a method of generating all the shortest
paths through the network, it is easy to modify the predicates to
generate a list of maximal flow paths through the network. We
now assume that each route segment has an associated maximal flow
capacity. At each stage, simply choose the direction of maximal
flow to expand the paths, and perform a sort on the maximal flow
of the route segments instead of minimum length. Then, write a
predicate that each time we reach the goal node with a route, go
back and subtract that route’s flow values from the network
capacities. When the Prolog backtracking search does not generate
any more solutions, all directed paths through the network have at
least one edge which is already filled to capacity. One other way
exists to increase the flow in the network. The paths which
contain edges that point backward along the allowed route segments
can be considered. Then, when the goal node is reached, proceed
back to the source and modify the flow capacities, and add flow
capacity along those segments, instead of subtracting it. As
explained by Sedgewick [10] when the above procedure reaches a
cituation in which all paths have either full forward edges or
nonempty back edges, then the Ford Fulkerson theorems says the
maximal flow of the network has been reached. Many of the
algorithms presently in use Goldberg [6] and Tarjan [12] for
solving the maximal flow problem do not save lists of partial paths
but instead use a labeling process to update information at each
node. This increases computational speed, but makes it difficult
to pick in order the main routes that contribute to the optimal
solution. Since it may be desirable to do sensitivity analyses
which locate the points in the network which most affect all the
possible solutions, the above approach gives more information after
the process is completed. Thus, it is possible to print out in
order of flow the paths which contributed to the max-min cut
situation. This then can be used to plan barriers for the defense
or attack routes for the offense. The description of the algorithm
is as given below:
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Step 1. Search for the best (maximal flow) route

from the starting to the ending node. Only search

in directions in which there is either a forward

edge with positive unused flow capacity, or a backward
edge with positive existing flow. If no route exists,
terminate the algorithm.

Step 2. Subtract the value of that flow from the
capacity slots in the route’s definition and add
the flows (or subtract the flows if headed

in a backward direction along an edge). Go to step
1.

Further explanation of the algorithm and examples of its use
are given in Harrell’s paper [6]. The source code of its
implementation is in the technical report [9]. If flow rates are
added to the edges in Example 2 the above procedure will generate
the maximum vehicular flow across the network and compute the
sensitivity of the solution to changes in flow rates at critical
nodes.

off-road vehicle flow capacities may be estimated from
vehicular movement formations and speeds in the terrain corridor
that each edge corresponds with. Suppose that the terrain will
support a certain number of units as shown in Figure 11 and the
movement speeds are as in Figure 8. Figure 12 shows the number of
vehicles per square kilometer that correspond to a particular
movement formation. Multiplying [1/(time it takes a group of
vehicles to traverse the edge)]* number of vehicles in the group
determines the flow rate associated with an edge. Then Figure 13
shows a maximum flow solution and Figure 14 shows the changes in
the solution caused by changing the speeds on three edges.
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¥umbers indicate vidtd
of movement corridors

Cross Country Yovement Network

Figure 11. size of movement corridors in standard units
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Figure 12. Standard cross country movement unit
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Figure 13. Maximal flow rates
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?he flgw paths and their maximum capacities that are
associated with the solutions of Figures 13 and 14 are :

Maximal flows without obstacles

MAXIMAL FLOWS

AIWHE flow veh/hr = 85.5 =
ABCFZE flow veh/hr = 81.0

AHE flow veh/hr = 78.5

AIKJHE flow veh/hr = 27,9

total flow 272.5 veh./hr.

If:
a. Four anti-tank ditches with corresponding parallel tank
bumps,
b. One standard(conventional) rectangular minefield
Maximal Flows with obstacles,
c. Four scatterable minefields,

are emplaced the maximal flows are reduced.
Maximal flows with obstacles

MAXIMAL FLOWS

ABCFZE flow veh/hr = 81.0
AHE flow veh/hr = 78.5

AIWHE flow veh/hr = 1505
AIKJHE flow veh/hr = 6.5

total flow 181.5 veh./hr

Theorems 1 through 4 solve the problem of determining how many
steps it takes this algorithm to generate all the paths that create
a max-min cut. As outlined in Example 3, after each search step the
new edges must be placed in a sorted priority queue of current
partial search paths. The maximum number of insertions required
after each search step is emax + maxe. Each insertion requires the
checking of the lengths of at most:

1 + emax*(n - nl - ncrit) + ((emax + maxe) *maxe - 1)*nlcrit
+ (((emax +maxe)*maxe) -:1)*(ncrit - nlcrit)

partial paths {according to Theorem 2} against the lengths of the
new paths created by adding an edge onto the active search path.
Let e* = maxe + emax, and assume e* <= SOme constant C1,then the
above expression is less than or equal to:

1 + nerit* c129 + n*2c1?
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The total number of steps is then bounded by:

{1 + (emax + Ta§§;*(n - ncrit) +
(emax + maxe) q * (ncrit - Blcrit)} *
[emax + maxe] * {1 +ncrit*Cl 9 4 nx2c1?}.

This is less than or equal to:

(c1 + n*c12 +ncrit#*c1(*2)}(1 +ncritsc1?d +n*2C1%}.

And this expression is of the order:

4

(n2y#2+c1%  + norit * c1(33%2),

Theorem 5 If in designing the networks which represent the
movement possibilities, we limit ourselves to the case:

(emax +maxe)® <= n and (emax +maxe) (33*2) <= n? , g<=2

then the number of sgeps needed to solve the maximal flow problem
is of the order of n”, the number of vertices cubed.

Also, if we are not interested in generating the saturating
flow paths in priority order of increasing flow, then the partial
paths do not need to be sorted after each search step. By examining
the above expressions we see that this reduces significantly the

time the algorithm takes to compute a maximal flow.

4. Methodology for Solving the Minimal Cost Network Flow Problem

As a further benefit of the above approach, the procedures
developed can be used to solve the minimal cost network flow
problem. The minimal cost network flow problem is a generalization
of the transportation network problem in operations research. In
its formulation each edge is assumed to have a cost as well as a
flow capacity associated. In this paper in order to determine the
cost associated with a flow the following procedure is used: 1) The
flow rate on each flow path solution through the network is
multiplied by its time of traversal and the result summed over all
paths in order to obtain a total cost associated with a given
maximum flow solution. This is the measure of effectiveness which
determines the optimality of the solution. The total cost of the
flow ‘can then be divided by the total maximum flow to obtain an
average cost per vehicle to travel through the network. The min-
cost flow problem is then the problem of determining from all the
possible flows which realize a given network maximal flow
value,those which do it with minimal cost. This measure of

effectiveness is important in wargaming because it represents the
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amount of target exposure which is required for an offensive force
to reach its objectives. As in the shortest path algorithm
presented earlier, the algorithm that will be used to compute total
cost of the flow expands the paths at each stage in the direction
of shortest time. The resulting expanded pathlist will be sorted
on time of the routes (in the maximal flow algorithm the maximal
flow possibilities were sorted on). Only those directions in which
the maximum flow algorithm says there is either a forward edge
with positive unused flow capacity or a backward edge with

v ]

positive existing flow should be chosen. As in the maximum flow
algorithm, when the goal node is reached we proceed back to the
source and subtract the maximum flow that least cost incremental
flow route can handle(in the maximal flow algorithm, the route is
not necesarily the least cost incrementing flow).

The following theorem from Ford and Fulkerson [5], which is also
noted in Deo [3], insures that this process will generate the

optimum solution.

Theorem 6 Let £ be the minimal cost flow pattern of value w from
start to finish. The flow pattern f’ obtained by adding delta <=
0 to the flow in the forward edges of a minimal cost unsaturated
path, and subtracting delta from the flow in the backward edges
of the path is a minimal cost flow of value w + delta for the
original network.

The same source code predicates can be used to implement this
algorithm:

Step 1: Search for the pbest (minimal cost) route from
the starting to the ending node. only search in directions in
which there is either a forward edge with positive unused flow
capacity, or a backward edge with positive existing flow. If no
such route exists, then terminate the algorithm.

Step 2: Subtract the value of that flow from the
capacity slots in the route’s definition and add the flows (or
subtract the flows if going in a backward direction) along the
edges. Go to Step 1.

If we again consider the network in Example 2, it is now
possible to solve the problem of determining which of the several
maximum flow solutions costs less in the above sense.

Minimal cost flows for the same network and same vehicle/weather
conditions are shown below in Figure 15. The maximum throughput
for the minimal cost flows is the same as that which results from
the maximal flow algorithm. The paths followed to acheive this
throughput is, however, different in the minimal cost flows from
those which result from running the maximal flow algorithm. This
is to be expected since in the minimal cost case the algorithm
chooses the direction of shortest time to expand the search path.
In the maximal flow case, the algorithm chooses the direction of
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maximum flow to expand the search paths. In the list of the
minimum cost flow paths, we have included an average cost for each
flow. This is defined to be the average of the sum of the amount
of each flow path (vehicles) times the cost of it (minutes). Note
that this average does not change much with and without the
presence of obstacles. This is because what the obstacles affect
(being employed over only a part of the network) is primarily the
maximum throughput, and not the time through the network.

MIN_COST FLOWS
Minimum cost flows without obstacles

AHE flow veh/hr = 78.5 cost time(min)= 48.7
AIWHE flow veh/hr = 85.5 cost time(min)= 56.8
AIKJHE flow veh/hr = 27.5 cost time(min)= 66.2
ABDZE flow veh/hr = 66.5 cost time(min)= 67.2
ABCFGE flow veh/hr = 14.5 cost time(min)= 67«2

total flow = 272.5 veh\hr. total cost = 78.5%48.7 + 85.5*56.8 +
27.5%66.2 + 66.5%67.2 +14.5*%67.2. average cost = 58.5 minutes per
vehicle

Explanation of How this Algorithm Can Be Used To Solve the
Transportation Network Problem

By the transportation network problem the following is meant:
Consider n points located on a map as origins of logistical
material. Each point has associated with it a supply of a[i] units
of the material. In addition, there are m destination points, with
each destination point requiring b(i] unit of the material.
Associated with each link in a network between the sources and the
destinations there is a unit cost of transportation and a flow
capacity. The problem is to determine the shipping pattern from
origins to destinations that minimizes the total cost under the
constraints imposed by the flow capacities on each 1link. By
defining n paths each with a flow capacity equal to a[i] from a
notional starting point, and m paths each with a flow capacity
equal to b[i] from the destinations to a notional ending points,
this problem can be considered as a special case of the minimal
cost network flow problem discussed in the previous section. The
algorithm given to solve that problem will in the process of
computing the maximal flow in the network just defined, produce
the minimal shipping cost solution which satisfies most of the
total requirements at the destinations. With simple modifications
to the starting requirements for the search routines the algorithm
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will produce.solutions which satisfy the list of destinations in
any given prioritized sequence.

Conclusions

6. We have given definit ons and examples of some artificial
intelligence network terminology and discussed several .ways in
which sorted priority queue depth-first searches can be used to
solve shortest path,network:maximal flow, and min-cost network flow
problems. We have shown that the time bounds for these algorithms
depend on the number of critical path backtracking nodes in the
following sense: If there are no critical backtracking nodes, and
the network is directed, then there are at most (emax -1)*(n - nl)
+ 1 paths in the whole search space. If there are critical path
packtracking nodes then the number of paths is bounded by:

1 + (emax -1)*(n - nl - ncrit) + (maxe*emax -1) *nlcrit
+((maxe*emax)? -1)*(ncrit -nlcrit)

We obtained similiar expressions for the case in which the paths
can go either forward or backward along edges in the network. We
used these expressions to obtain time bounds for the total number
of steps to solve the maximal flow and min-cost flow problems.
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