A Brief Description of the Way Forward and Backward Chaining
Works

In forward chaining, the inference mechanism starts by
evaluating the first rule in the knowledge base. If the
antecedent of that first rule is true, then the consequent of the
rule is used to search for a conditional with an antecedent
identical to the previous consequent. This forward chaining
continues until the system is unable to match a consequent with
an antecedent. Because the system reasons from the information or
data provided, this form of processing is said to be data driven.
The two rules below will serve as a demonstration of this
process:

IF A IS true, THEN B IS true
IF B IS true, THEN C IS true

a. The following steps define how forward chaining could be
applied to the rules above:

(1) If "A is true" is known, the inference mechanism will
prove "B is true" by modens ponens®©.

(2) The system then searches forward for a rule that has an
antecedent that matches the consequent "B is true". A match is
found in the second rule.

(3) Again the law for modens ponens is used to prove that "C
is true". Since no further rules can be found with antecedents
that match consequents, the system will offer "C is true" as its
conclusion.

In backward chaining, the inference mechanism starts
with a goal and seeks to find a rule with that goal as its
consequent. It then verifies whether or not that rule can be
derived from another rule by finding another rule whose
consequent matches its antecedent. This process of backward
chaining continues until a rule is found that has an independent
antecedent. Thus, backward chaining is actually goal driven in
its problem solving strategy.

The example below demonstrates the implementation of this
concept:

Goal statement

8 "A rule of inference that states: IF A implies B and A is
known to be true, then B is true.

81

D IS true

Production rules

RULE 1
IF A IS true
THEN B IS true
RULE 2
IF B IS true
THEN C IS true
RULE 3
IF C IS true

THEN D IS true

b.The first statement in the example above, "D IS true," is
the goal for this knowledge base. The following steps explain
how LEVELS’s inference mechanism backward chains to prove this
goal:

(1) The system begins by searching for a rule with the goal
"D IS true" as its consequent. Since Rule 3 satisfies this
condition, the program backward chains to check if the antecedent
"E IS true™
can be derived from another rule.

(2) It is discovered that Rule 2 does, in fact, have a
consequent that matches the antecedent of Rule 3. The program
will now test to see if the antecedent of Rule 2, "B IS true",
can be derived from another conditional.

(3) Rule 1 has a consequent that matches the hypothesis in
Rule 2.
LEVELS searches once more for other supporting rules. Since none
can be found, the program asks the user:

18 .it. £riue that:
A IS true

If the user answers yes, the inference mechanism is able to
reach the conclusion that "D IS true" based on the law of
hypothetical syllogism®.

9 A rule of inference that states: IF A, then B. If B, then
C. Therefore, If A, then C.

82

Suppose we try and create a fully backward chaining
problem solving strategy to implement our stream bed flow expert
systen rule base. We need one primary goal which all the other
rules work backward toward solving; a series of secondary goals
each of which has information needed by the primary goal; and a
whole series of secondary factors which contribute to the
information required to satisfy the secondary goals.

DETERMINE
primary goal PE%NIFORM gEABILITY
DETERMINE DETERMINE DETERMINE
secondary goals MAIN CHANNEL CHANNEL WIDTH SLOPE
DEPTH STABILITY STABILITY

STABILITY

secondary factors: channel depth, channel slopes, channel width,
fines present on the bar surface, type of bar, etc.

In this simplification of our river channel flow system the
flow chart for the problem solving strateqgy would be:

examine main channel depth
stability

JL
width factors involved V°

L Yes

examine width stability =7 DONE
d i /’\
slope factors involved 4,

{L ree
examine channel slope stability

10 The secondary factors are connected to the secondary
goals by sets of control rules which are explained below.

33

In order to implement this problem solving strategy in backward
chaining we would need what is called control rules. For example,

we would write

RULE 1

IF Channel Depth and Slope Stability known
AND Channel Width Stability known

THEN Planiform Stability known {conclusion 1}

RULE 2

IF Channel Depth Stability known

AND Channel Slope Stability known

THEN Channel Depth and Slope Stability known {conclusion 2}

RULE .3
IF Channel Width IS increasing,decreasing,stable
THEN Channel Width Stability known {conclusion 3}

RULE 4
IF Channel Depth IS increasing,decreasing,stable
THEN Channel Depth Stability known {conclusion 4}

RULE 5
IF Channel Slope IS increasing,decreasing,stable
THEN Channel Slope Stability known {conclusion 5}

The goal of the above abbreviated backward chaining system
is to arrive at the conclusion "Planiform Stability is known".
Since Rule 1 has that conclusion as its consequent, the
inferencing mechanism tries to satisfy the two antecedents of
Rule 1: "Channel Depth and slope Stability known" and "Channel
Width Stability known". The consequent of Rule 3 matches the
latter so the inferencing mechanism tries to satisfy the
antecedent of Rule 3: "Width is increasing, decreasing,
stable".We would then have a rule dependency map for the full
rule set as below:

RULE 4

RULE 2
RULE 5 = e

ULE 1

—
RULE 3

or a similar graph if we plotted the relationships by
rule conclusions instead of rule numbers.

CONC 4
Pl
"‘“‘% CONC 2y
CONC 5 =~ CONC 1

1
CONC 3

84

The difficulty with this problem solving strategy is that when we
add rules to get the information that is needed to form the
conclusions in the higher level rules,the hypotheses for those
rules may contain variables which fire other rules that alter

previous conclusions. For example, suppose we have a rule that
says :

RULE 6
If A diagonal bar is present
THEN Channel Width IS increasing

then we cannot determine what RULE 3 (which involves the Channel
Slope in its conclusion) will say until RULE 6 (which involves
Cchannel Width) is evaluated. If the program happens not to
consider the rules in the correct order (as it doesn’t in this
example) then the conclusion reached will not be valid. Thus we
see that in the most general situation conclusions reached upon
considering beginning rules may have to be reevaluated in light
of later conclusions that the rule-based system reaches.

85

How to Create Forward Chaining in a Backward Chaining s8ystem

Although PROLOG goal driven systems are not designed
primarily for data driven problems (see Brakto (1986) and Amble
(1987) for an explanation of how these systems work) it is
possible to simulate forward chaining in a backward chaining
search using global variables!l and recalling the goal (cycling)
after each success. Newer versions (2.5 and later) of the LEVELS
software, written for IBM compatible personal comouters, have
significant object oriented features which make forward chaining
in this type of system easier. However, LEVELS5 version 1.1 which
is available for the MacIntosh and used for this report can also
be used for these type of problems.

In cycling the program there must be only one top-level
joal (which is called "forwairu chain" in the manuall?). A global
variable (called "step") then allows you to consider different
jroups of rules on different passes through the rule base. The
programmer must then organize the groups of rules so that
every group is consider in a fixed sequence of different "steps".

The hierarchy of goal levels shown in the manual where they
are listed in outline form such as 1., 1.1, 2., 2.1, only work
when you need to make a single pass through the set of rules.
First goal selection determines which upper level rule you want
the compiler to unify variables!? on. This works just like when a
PROLOG compiler asks you which goal to solve for in its predicate
rule base. It does not prioritize the goals and search for all
possible solutions. But, the search levels are created by the
developer placing what is sometimes called a "salience factor®
(or operator precedence factor) on the rule when it is placed on
the goal stack!®. when a new hypothesis is placed on the search

14

11 wp value established for use when no procedure or binding
(a place in memory reserved for a value associated with a symbol)
primitive supplies a value." Winston and Horn, op.cit.

12 1 EVELS5 for the Apple Macintosh, User’s Guide, by
Information Builder’s, Inc. 1250 Broadway, New York,N.Y. 10001.

13 wThe process of comparing two pattern expressions to see
if they can be made identical by a consistent set of
substitutions." Winston and Horn, op.cit.

14 w aA priority number given to a rule. When multiple rules
are ready to be satisfied or as is sometimes said, for "firing",
they are fired in order of priority. The default salience is
zero. Rules with the same salience are fired according to the
current conflict resolution strategy." NASA op.cit.

15 a 1ist of all the goals that the inference mechanism is

backward chaining in order to satisfy. The goal at the top of the
list is the goal which the compiler is currently searching the

86

stack!® (also called an agenda) salience numbers are checked to
make the insertion. The search then keeps going until it bottoms
out on a lower level goal. Problems suited for this type of
program organization are for instance, diagnostic rule bases or
classification problems with only one end conclusion. Groups of
definitions of objects fall into this category.

One way to order the rule pase is to list which rules have
variables in their hypotheses, define a partial order on the
rules by letting the rules be nodes in a graph and connect two
nodes (rules) with an edge if the conclusion of one is used in
the hypothesis of another 17 and then topologically sort the
rule base according to this partial order:

ALGORITHM TO TOPOLOGICALLY SORT RULES IN AN EXPERT SYSTEM

0) For the whole set of nodes of conclusions in the rules:
1} If -every conclusion node has a predecessor, then stop. The
rule based system has a cycle and 1is infeasible (that is, a
partial order cannot be defined on it).
2) pick a node V which has no predecessor
3) place V on a list of ordered nodes
a) if a terminal conclusion node is reached, print out the list
of rules used on the way to reach that conclusion.

4) delete all edges leading out from V to other nodes in the
network

5) Go to step 0).1°

knowledge base of consequents in order to unify variables on.

16 wp 1ist of all rules that are presently ready to be
satisfied. It is sorted by salience values and the conflict
resolution strategy. The rule at the top of the search stack or
agenda is the next rule that will fire.", NASA, oOp. o o

17 Recall the definition from mathematics that a partial
order is a relation rel(x,y) between objects in a set that
satisfies the reflexive (rel(x,x) is always true), and
transitive conditions (rel(x,Y) and rel(y,z) true implies that
rel(x,z) true). If the relation also satisfies the symmetric
condition (rel(x,y) true implies rel(y,x) true) then it is
called an equivalence relation.

18 a further discussion of the way this algorithm works in
the case of any partial order and how to write the pseudo code
for a simple version of it is given in the books: Fundamentals of
Data Structures by E. Horowitz and S. Sahni, Computer Science

87

; txample:

3] initiai network: v 2 \
| e 4
| w3 —— §
" .7
\a’ f{:
s S
1 node visited - i
‘emaining network: 74
\u
B e
X
4 —» B

c) node visited - 4

X 2
remaining networkl
q \‘
3—» 5
N\,

Press, Rockville, MD, 1982.,and Algorithms + Data Structures =
Programs by Niklaus Wirth, Prentice Hall, 1976. A C source code
implementation of it along with a further discussion is included
in Appendix II.

88

d] node visited 3

remaining network:

e) nade visited 6

remaining network: 2

f] node visited 2

remaining network:

g) node visited 5

N

A

5

at this point a terminal conclusion is reached and the number of levels
of rules needed (3] is printed out

An example of how the
in figures 1 and 2 above.

First a successor list for

vertex
vertex
vertex
vertex
vertex
vertex

for
for
for
for
for
fOY

list
list
list
list
list
list

successor
successor
successor
successor
successor
successor

above algorithm works is illustrated

each rule conclusion node is created:

w

4]

oUW

e B o B e B o N e |
LN
(€]e)
ed

)
]

Then the algorithm produces a topological ordering of vertices
as shown in the figures and as listed below:

1 4 3 6

terminal conclusion reached
3 levels of rules required

2 >

terminal conclusion reached

89

3 levels of rules required

With the above topological ordering when rule 6 is
considered, the information for either rule 3 and 4 is then
required. And each of these rules will require the information
from rule 1. This path of rules then forms at least two forward
chaining "cycles" or "steps" . We do not know beforehand whether
rule 3 or rule 4 will provide the way to satisfy rule 6, hence a
separate step is required to recycle through the rules to cover
all possible cases (see the next section for the details of how
this is implemented in the code). 1o petter nrganize things for
future additions to the rule base, i is prudent to add another
step for rulel and thus use three steps for this path of rules.
For step 4 in this examplie we consider rule 5. This rule then
requires the information fro. ule 2 and rule 1 in that order.
Rule 1 has already been consider=d in step 1. With this path all
rules have been considered. Therefore two more steps of recycling
through the rules are required to consider the whole rule base.
These two steps will then insure that all the information
necessary to reach any possible conclusion has been entered.

If, in entering the input information, we change the order
\n which the nodes coming out of a given vertex are ordered the
program gives a different output. This is a result of the fact
~hat for a given set of order relations there may be many
different ways of defining a partial order on them. Consider what
nappens in the above algorithm if we change the input order:

successor list for vertex 1 [4 3 2]
successor list for vertex 2 [5]
successor list for vertex 3 [6 5]
successor list for vertex 4 [6 5]
successor list for vertex 5 []
successor list for vertex 6 []

the algorithm will then produce the following topological
ordering of vertices:

1 2 3 4 B
terminal conclusion reached
3 levels of rules required
5
terminal conclusion reached
3 levels of rules required

Jowever, upon examining this output, it can be seen that the
number of paths, "cycles", or "gteps", required to enter all the
information into the classification system is the same in the two
cases. Also, the maximum depth or number of levels of backward

90

reasoning for all cycles will be the same for both cases. The
next section will explain the coding procedures for implementing
these forward chaining cycles or steps which are determined by
the topological order.

91

Procedures to Use in Creating the Knowledge Base in a
Classification Type Expert System

In order to create a knowledge base there is an organized
procedure that one can follow:

a.Establish the facts by:
(1) collecting all the relevant facts and

information

(2) divide the objects in the facts into different
categories

(3) outline or catalog the complete set of facts
according to these categories.

(4) write down all the rules (involving forward
chaining) relating these categories.

(5) write down a decision tree for what the expert
system is trying to analyze such as that shown in the previous
paragraph.

(6) determine the one goal which the expert system is
trying to satisfy.

(7) write down all the backward chaining rules which
help to satisfy that one goal.

(8) relate the forward chaining and backward chaining
rules in order to have the expert system perform its task in one

program run.
i) write down a complete table of all the variables

and conclusions involved in the knowledge base.

11) topologically sort the rules based on the
order the conclusion occur in.

iii) plot all the paths in the knowledge base.in
which variables can be instantiated and conclusions reached (this
is done in paragraph 20 in this report).

iv) use global variables to group the

instantiation of the variables and predecessor conclusions
involved in the hypotheses.

For an example that explains the forward chaining procedure
consider the following abbreviated example using the river

92

(5)

If we add a rule or topic for obtaining the initial
information we need to start the forward chaining, and a final
rule or topic to generate the report and write it to a file we
can now write down an outline or decision tree for what the
expert system is trying to analyze.

1. Introduction

1.1 River’s name entered RULE 1

2. Draw conclusions

2.1 Bar composition determined RULE 2 RULE 3
2.2 Channel depth determined RULE 4

By

3.1 Report filed RULE 5

(6) In this case the one goal that the expert system is
trying to satisfy is to generate the final report (which by the
way should contain all the conclusions the forward chaining has
generated)

If we call this one goal "forward chain"

We can now write down a flow diagram for the program
to reach all the conclusions we want:

step 1
river’s name
step 2
bar composition
step §:
channel depth
step 4

file a report containing all the conclusions
reached

(7) We can write this rule to finish the forward chaining
as:

RULE 5
IF previous steps complete

AND FILE results file footer
THEN stop

The problem at this point is that there hasn’t been a condition

43

13,

channel flow information

(1) . We have various attributes that describe the river
channel flow geometry: among these are bar composition
framework gravel, censored gravel, filled gravel, or matrix
gravel, channel depth(a numerical value). Once we know these
Attributes we have a list of rules relating them from which we
can draw inferences.

(2) We define a data structure:

ATTRIBUTE The bar composition
AND channel depth

We will also need a string variable which hold’s the
river’s name to write on the final report:

STRING The river’s name

(3) We can now organize this information in the following
outline

1. River’s name entered
2. Bar composition determined
3. Channel depth determined

(4) we can now write down the forward chaining rules
involving these attributes and variables:

RULE 1

IF The river’s name <>""
AND FILE the results

THEN River’s name entered

RULE 2

IF Fines are present on the bar surface
THEN The bar composition IS matrix gravel
AND Bar composition determinﬁé

RULE 3

IF NOT Fines are present on the bar surface

AND Grains on the bar surface are interlocked with
voids

THEN The bar composition IS Framework Gravel

AND Bar composition determined

RULE 4
IF Channel Depth > 0
THEN Channel Depth determined

19 The steps in the example are ordered according to the
letters in the above procedures.

94

